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We study the entropy landscape of solutions for the bicoloring problem in random graphs, a representative
difficult constraint satisfaction problem. Our goal is to classify which types of clusters of solutions are ad-
dressed by different algorithms. In the first part of the study we use the cavity method to obtain the number of
clusters with a given internal entropy and determine the phase diagram of the problem—e.g., dynamical,
rigidity, and satisfiability-unsatisfiability �SAT-UNSAT� transitions. In the second part of the paper we analyze
different algorithms and locate their behavior in the entropy landscape of the problem. For instance, we show
that a smoothed version of a decimation strategy based on belief propagation is able to find solutions belonging
to subdominant clusters even beyond the so-called rigidity transition where the thermodynamically relevant
clusters become frozen. These nonequilibrium solutions belong to the most probable unfrozen clusters.
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I. INTRODUCTION AND MOTIVATIONS

Many disciplines have at their root random constraint sat-
isfaction problems �CSPs�. Examples are information theory
where they are used to design error-correcting codes �1,2� or
computer science where they constitute elementary models
for studying the onset of exponential regimes in algorithms
�3�. More generally, random CSPs capture some of the opti-
mization aspects of complex systems found in physics �e.g.,
spin-glasses and packing problems�, in economics �e.g., fi-
nancial markets� �4,5�, and in biology �e.g., gene networks
reconstruction and learning in neuroscience �6,7��. A random
CSP is characterized by an extensive list of constraints, each
one forbidding some of the joint assignments of the �dis-
crete� variables it involves. In packing problems, for in-
stance, overlapping positions of the elementary tiles on a
given lattice are forbidden. Given an instance of a CSP, one
wants to know whether there exists a solution—that is, an
assignment of the variables—which satisfies all the con-
straints �e.g., a proper tiling or a proper coloring of a graph�.
When such an assignment exists, the instance is called SAT
and one wants to find it. Most of the interesting CSPs are
NP-complete �8,9�: in the worst case the number of opera-
tions needed to decide whether an instance is SAT or not is
expected to grow exponentially with the number of variables.
The interesting limit for random CSPs is the thermodynamic
one where both the number N of independent variables and
the number M of constraints go to infinity at fixed constraint
density ��M /N. The most intriguing phenomenon is cer-
tainly the appearance of sharp thresholds �10,11�. At some
critical ratio �s the probability of the existence of solutions
jumps from 1 to 0. Just below such a threshold, most of the
known heuristic algorithms are observed to undergo a dra-

matic slowing down. Such a phenomenon has been put in
connection with the onset of a clustering phase, where the
space of solution becomes divided in a large �exponential�
number of different clusters �or states� and variables develop
nontrivial long-range correlations.

The scope of this study is to go a step further in the
statistical physics analysis of the connection between cluster-
ing and the behavior of algorithms. By an analytic estimate
of the internal entropy of the clusters found by different al-
gorithms on large problem instances and by a large deviation
analysis of clusters distribution with respect to their internal
entropy, we are able to display which types of clusters are
addressed by different algorithms. For random CSPs in the
clustering phase, we observe that local search algorithms
may be attracted by a large spectrum of clusters �not surpris-
ingly as happens in out-of-equilibrium physical systems�.
Quite surprisingly, we also show that there exist simple
message-passing �MP� processes that are capable of finding
efficiently solutions even in the harder region where the ther-
modynamically dominant clusters become frozen. In such a
region local search algorithms are observed numerically to
undergo an exponential slowing down due to the global re-
arrangements needed to correct the errors made along the
search process. On the contrary, the MP processes that we
study continue to find solution efficiently by addressing clus-
ters which are more rare than the dominating ones �i.e., those
which would be seen by sampling solutions with uniform
measure over the solution space�. These results, together
with the evidence coming from fully connected CSPs that
even frozen solutions may be found by MP �6�, shed light on
how MP algorithms can be utilized and suggest that some
further algorithmic progress may be at hand.

In what follows we first provide a very brief review of the
known results and next apply our arguments to the so-called
bicoloring problem, which has some analytical advantages
compared to other NP-complete problems like
K-satisfiability �K-SAT� or coloring while retaining all the
conceptual features.
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The paper is organized as follows. In Sec. II an intuitive
introduction to clustering is given. The definition of the spe-
cific problem under study is provided in Sec. III together
with a summary of previously known results. The cavity
method for large deviations is presented in Sec. IV. The nu-
merical methods used to solve the cavity equations and ex-
tract the complexity curves are described in Sec. V. In Sec.
VI the equations are solved in some special cases in order to
obtain the main properties of the phase diagram of the prob-
lem. The algorithms used to find solutions and locate them in
the entropy landscape are described in Sec. VII. Section VIII
is devoted to a summarization of the main results of the
paper and to giving some concluding remarks and discussing
perspectives. In the Appendixes we report the details of de-
riving the cavity equations and some quantities that are es-
sential in computing the free energy.

II. GEOMETRY OF SOLUTIONS AND FREEZING

The set of solutions of a random CSP should be thought
of as a portion of the phase space which may undergo a
fragmentation into clusters for values of the density of con-
straints right below the SAT threshold. This scenario can be
made rigorous in few cases, the simplest one being the ran-
dom XOR-satisfiability �XOR-SAT� problem �12,13�: the
density of constraints where clustering appears corresponds
to the percolation of particular structures in the underlying
graph of constraints. This fact can be used to define clusters,
which, by linearity of XOR-SAT, turn out to be all identical.
One may prove that a finite fraction of the variables have to
be frozen—that is, must take the same value in all solutions
belonging to a cluster. This picture is, however, far from
general: both the definition of clusters and the analysis of
their fluctuations in size are difficult tasks, which require
application of the cavity method in a rather advanced setting
�14–18�. One important feature of clusters in CSPs concerns
the presence or absence of frozen variables. It may happen
that clusters with frozen variables coexist with totally unfro-
zen clusters of larger internal entropy, with large effects on
the hardness of the associated combinatorial optimization
problem. The intuitive reason why the presence of frozen
variables is believed to be relevant is well summarized by
the idea of rearrangements �18�: “given an initial solution of
a CSP and a variable i that one would like to modify, a
rearrangement is a path in configuration space that starts
from the initial solution and leads to another solution where
the value of the ith variable is changed with respect to the
initial one. The minimal length of such a path is a measure of
how constrained the variable i was in the initial configura-
tion. In intuitive terms this length diverges with the system
size when the variable was frozen in the initial cluster.” The
idea is that when freezing takes place in Gibbs states, then
the rearrangements are responsible for a critical slowing
down of local search algorithms. On the contrary, when
dominant clusters are not frozen, even relatively simple local
algorithms may find solutions by incrementally adding con-
straints until the full problem is satisfied. Recent arguments
and numerical studies have shown that one can still obtain a
solution beyond the dynamical transition as long as the so-

called jamming transition has not occurred �19�. Following
Ref. �19�, one can imagine adding the constraints one by one,
in each step recording the number of flips that are required in
order to find the new solution. Close to the jamming transi-
tion the number of flips diverges and makes it difficult to find
a solution to the CSP �18�.

A constrained satisfaction problem is defined by a set of
constrains C= ��Ia��� �� �0,1��a=1, . . . ,M� on a number of
variables. The constraints depend on the configuration of
variables �� ����i�i=1, . . . ,N� and the problem is called sat-
isfiable if all constraints are satisfied—i.e. Ia=1, ∀ a. A
solution of the problem is a configuration of the variables
that satisfies all constraints. In analogy with statistical phys-
ics models, we define the energy E��� � of configuration �� as
the number of unsatisfied constraints in �� . Given an instance
of a CSP, one is interested in deciding whether it is satisfi-
able �i.e., E��� �=0� and, in such a case, in explicitly finding
solutions to the problem.

More generally, one can define an ensemble of instances
of the problem considering all possible random assignments
of the M constraints among N variables, with fixed density of
constraints �=M /N. Varying � it was shown that the system
passes from a phase in which it is always possible to find a
solution, the SAT phase, to the UNSAT phase where a frac-
tion of the constraints are not satisfied. Examples of studies
for root problems such as the random satisfiability problem,
XOR-SAT, and graph coloring can be found in �20–25�. The
main tool for analyzing the satisfiability of typical problem
instances is the cavity method, originally developed to study
the thermodynamic properties of diluted spin-glass systems
�26� and recently reconsidered in the context of CSPs
�22,27,28�. Actually, the cavity method at the ensemble level
allows one to study typical properties as well as large devia-
tions from typical behaviors �13,14,16�. The key feature of
the cavity method which is of interest for computer science
stems from the discovery that it can be converted to an al-
gorithm for analyzing single problem instances �22,33�, be-
coming an efficient solver for the random combinatorial
problems.

III. DEFINITION OF THE PROBLEM
AND KNOWN RESULTS

Consider a hypergraph of N nodes i=1, . . . ,N and M hy-
peredges a=1, . . . ,M. For simplicity we consider regular
random hypergraphs, or �K ,L�-hypergraph, where each hy-
peredge connects K nodes and each node contributes in L
=KM /N=K� hyperedges. A node in this hypergraph has
state �i� �0,1�, and each hyperedge imposes a constraint on
the values of the associated variables. In the bicoloring prob-
lem this constraint just forbids the configurations in which all
the nodes belonging to an hyperedge have the same value. In
the context of circuit logic the bicoloring problem is known
as not-all-equal-satisfiability �NAE-SAT� problem, in phys-
ics it is a spin model with antiferromagnetic interactions.

We may represent bicoloring as a factor graph �30�. This
is a bipartite graph where the variables and constraints are
represented with two different types of nodes: variable and
function nodes, respectively. Each function node is con-
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nected to all the variable nodes that should satisfy the asso-
ciated constraint. Figure 1 shows an example of regular ran-
dom factor graph.

The hypergraph bicoloring problem is NP-complete for
K�3 �31�. The case K=3 with a Poisson degree distribution
for the variable nodes has already been studied in �32�. The
authors found dynamical and SAT and UNSAT transitions
within the single- and multiple-cluster approximations. In
spin-glass language these approximations are called the rep-
lica symmetric �RS� and one-step replica symmetry breaking
�1RSB� approximations, respectively. In the latter case the
authors only consider the most numerous clusters.

The intensive entropy s is defined by the number of solu-
tions, N=eNs. Using the Bethe approximation in the replica-
symmetric phase we find the entropy as

sRS = ln	2
1 −
1

2K−1�L� − �K − 1�� ln	1 −
2

2K� . �1�

This quantity vanishes at

Ls
RS = − K

ln 2

ln
1 −
1

2K−1� , �2�

where for K�1 gives

Ls
RS  K2K−1 ln 2	1 + O
 1

2K�� . �3�

If there exists more than one cluster of solutions, we define
the complexity � by Nc=eN� where Nc is the number of
clusters. Notice that for very large N the above complexity is
dominated by typical clusters. In the 1RSB approximation
and considering only typical clusters, the complexity reads
�32�

�typ = ln�AL� − �K − 1�� ln	1 −
1

2
�1 − ��
1 −

�L−1

AL−1
�� ,

�4�

where

AL = 2
1 −
1 − �

2
�L

− �L �5�

and � is determined by the equation

� = 1 − 2	1

2

1 −

�L−1

AL−1
��K−1

. �6�

A nontrivial solution ���1� for the above equation results in
a nonzero complexity. Let us assume K�1 and find the
point where for the first time a nontrivial solution appears.
We try �=1− c

2K−1 and find c in a self-consistent way. From
the above equation we obtain

c

2
 exp	−

K − 1

2
e−c�L−1�/2K� . �7�

It means that to have a finite solution for c we need L di-
verges as

Ld
0  2K1

c
	ln K − ln 2 − ln ln
2

c
� + o�1�� . �8�

At the SAT-UNSAT transition �typ vanishes and we can use
this fact to determine �s. This value behaves, asymptotically,
as �s

RS in Eq. �3�. In Table I we compare the numerical values
of Ld

0 and Ls obtained with the above methods.

IV. CAVITY METHOD: A LARGE DEVIATION STUDY

A more complete picture of the distribution of clusters is
given by a large deviation study �14,16,29�. We define the
partition function at zero temperature as

Z = �
��

�
a

Ia���a�exp
x�
i

��i − �i
��2� . �9�

Here x is a Lagrange multiplier that controls the distance
between the solutions and a reference point �� � and ��a
= ���i�i�V�a�� where V�a� is the set of neighbors of function
node a. For x=0 we recover the total number of solutions. If
there is only one cluster of solutions, we can safely use the
standard belief propagation �BP� equations �30� to obtain an
estimate of the cavity marginals �see Appendix A�:

FIG. 1. �Color online� A regular random factor graph with func-
tion nodes �squares� of degree K=3 and variable nodes �circles� of
degree L=2.

TABLE I. Numerical values of Ld
0 and Ls �in the RS and 1RSB

approximations�. In each case we have given the smallest integer
degree larger than or equal to the precise value.

K Ld
0 Ls

RS Ls
1RSB

3 – 8 7

4 17 21 20

5 40 54 53

6 91 131 130

7 200 309 307

8 428 708 705

9 905 1594 1592

10 1894 3546 3543
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�i→a��i� =
1

Zi→a
�

��i→a

 �

b�V�i�\a
Ib���b�

�	 �
j�V�b�\i

� j→b�� j���ex��i − �i
��2

. �10�

Here Zi→a is a normalization constant, V�i� is the set of
neighbors of variable node i, and ��i→a
= ��� j�j�V�b� ,b�V�i� \a�. We will write the above equation
in short as

�i→a��i� = S�� j→b� . �11�

We also define the free energy f�x� as

Z = eNf�x� = �
d

eN�s�d�+xd�, �12�

where d= 1
N�i��i−�i

��2 and eNs�d� is the number of solutions
at distance d from the reference point. In the Bethe approxi-
mation,

f�x� = �
i

�f i − �
a

�Ka − 1��fa, �13�

where

eN�f i = �
�i
	 �

a�V�i�
�a→i��i��ex��i − �i

��2
,

eN�fa = �
��a

Ia���a� �
i�V�a�

�i→a��i� . �14�

Using the above free energy we can determine the entropy
s�d� by a Legendre transform:

s�d� = min
x

�f�x� − xd�x��, d�x� =
� f�x�

�x
. �15�

If the replica symmetry is broken, we would have differ-
ent clusters of solutions and the cavity marginals fluctuate
from one cluster to another one. This is described by a gen-
eralized partition function defined by

Z � eNF�m� = �
c

emNsc =� ds eN���s�+ms�. �16�

Here c labels the clusters and sc is the internal entropy of
cluster c. Again, in the Bethe approximation,

NF�m� = �
i

ln Zi − �
a

�Ka − 1�ln Za, �17�

where

Zi �� �
a�V�i�

�
j�V�a�\i

dP j→a�� j→a�emN�si,

Za �� �
i�V�a�

dPi→a��i→a�emN�sa. �18�

Having the generalized free energy we can determine the
complexity ��s� by a Legendre transformation:

��s� = min
m

�F�m� − ms�, s�m� =
�F�m�

�m
. �19�

In Appendix B we explain the origin of the above relations.
Notice that �si=�f i�x=0� and �sa=�fa�x=0�, where the
free energy shifts are given by Eq. �14�. Moreover,
Pi→a��i→a� is the probability that, in a randomly selected
cluster, we find the cavity marginal �i→a on edge �i ,a� of the
factor graph. This probability distribution is determined by
the following self-consistency equation:

Pi→a��i→a� =
1

Zi→a
� �

b�V�i�\a
�

j�V�b�\i
dP j→b���emN�si

�	��i→a − S���� , �20�

where Zi→a is a normalization constant and S��� is the same
as in Eq. �11� with x=0. The factor emN�si is to sample cor-
rectly the clusters when we add the new variable i. Let us
multiply the two sides of Eq. �20� by 2�i→a��� to find the
new probability distribution Qi→a

� ���=2�i→a���Pi→a���,
which will be useful in the special case of m=1. On the
right-hand side we can replace �i→a��� with its definition in
Eq. �10�. Rearranging the terms we get

Qi→a
�i ��� =

2

Zi→a
� �

��i→a

�
b�V�i�\a

Ib���b�

� �
j�V�b�\i


1

2
dQ j→b

�j ����e�m−1�N�si	��i→a − S���� .

�21�

In the following we will split Pi→a��� into frozen and unfro-
zen parts as

Pi→a��i→a� =
1 − 


2
�	�r� + 	�r − 1�� + 
��r� , �22�

where �i→a�0�=r, �i→a�1�=1−r, and ��r� is the probability
distribution of unfrozen fields. The above arguments become
much simpler in random �K ,L�-hypergraph where all the
links and nodes are statistically equivalent. For example, Eq.
�17� is replaced with

F�m� = ln�� DiP���emN�si� − ��K − 1�ln�� DaP���emN�sa� ,

�23�

where �DiP��� and �DaP��� denote integrations over all
cavity marginals that contribute in �si and �sa, respectively.

V. ENTROPY LANDSCAPE: NUMERICAL METHOD

The main equation that we should solve is Eq. �20�. One
can use the population dynamics method �27,28� to get rid of
summing over a large number of continuous variables.

A. In a single hypergraph

Given the factor graph we represent Pi→a��� by a popu-
lation of Np cavity probabilities �or fields�, Fig. 2. At the
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initial point all the cavity fields are of a frozen kind with
equal probability for r=0 and r=1. With this initial condition
we will not miss a nontrivial solution with frozen fields, if
any. At each step of the population dynamics we select a link
�i→a� randomly and do in the following way.

�i� For each b�V�i� \a and j�V�b� \ i, randomly select a
member of the population on link �j→b�.

�ii� Using these �L−1��K−1� fields, calculate the new
�i→a by Eq. �10�.

�iii� Calculate the weight wi→a=emN�si from Eq. �14� at
x=0. This weight is zero if there is any contradiction.

�iv� With probability
wi→a

wi→a
max replace a randomly selected

member of the population with the new one. Here wi→a
max is the

maximum weight wi→a observed in the evolution from the
beginning.

In a sweep of the algorithm we choose all the links of the
factor graph randomly. Having the populations we can obtain
the free energy as

NF�m� = �
i

ln Zi − �K − 1��
a

ln Za,

Zi = �emN�si�pop,

Za = �emN�sa�pop, �24�

where �¯�pop means averaging over the populations. We
stop the updates as soon as the free energy, and so the
weights wi→a

max, reaches the steady state. Then the entropy
reads

Ns�m� = �
i

�si − �K − 1��
a

�sa,

�si =
��sie

mN�si�pop

�emN�si�pop
,

�sa =
��saemN�sa�pop

�emN�sa�pop
. �25�

Figure 3 shows the results for choices of the factor graph
parameters that correspond to different phases.

B. In the one-link approximation

In a regular random hypergraph all links of the associated
factor graph are equivalent. Therefore we can forget about
different populations on different links and work with only
one large population of fields. The way we obtain the sta-
tionary distribution P��� is the same as above. The only
difference is that we always select the fields from the single
population. In Fig. 4 we compare the complexity computed
on a single �4,19�-hypergraph of size N=104 with complexity
obtained in the one-link approximation.

VI. ENTROPY LANDSCAPE: ANALYTICAL RESULTS

To locate different phase transitions in the solution space
we need to calculate the generalized free energy F which is

p

1 Np

{µ ,...,µ }

{µ ,...,µ }

1 N

FIG. 2. �Color online� Population dynamics works with a popu-
lation of fields on each link of the factor graph.

0 0.02 0.04 0.06 0.08 0.1
−0.01

0

0.01

0.02

0.03

0.04

0.05

s

Σ

L = 18

L = 19

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
−0.01

0

0.01

0.02

0.03

0.04

s

Σ

FIG. 3. �Color online� Complexity vs entropy for K=4, L
=18,19 with Np=105 �top� and K=6, L=121 with Np=2�104

�bottom� in the one-link approximation. Solid and open symbols
represent frozen and unfrozen parts, respectively. The statistical er-
rors are about 0.001.
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given in terms of Zi and Za in Eq. �18�. These quantities in
turn depend on the fraction of frozen variables 
 and ��r�
which should be determined by Eq. �20� for P���. In the
following we study some special cases that allow us to cal-
culate the above quantities and determine the phase diagram
of the problem. For clarity here we only state the results of
calculations that will be presented in more details in Appen-
dix C.

A. Case m=1

The study of m=1 clusters is relevant in determining the
dynamical, rigidity, and condensation transitions �16�. These
are in fact the thermodynamically relevant clusters before the
condensation transition.

For m=1 the generalized free energy reads

F = ln
2	1 −
1

2K−1�L� − �K − 1�� ln
1 −
2

2K� . �26�

Comparing with the RS entropy sRS in Eq. �1� we see that
F�m=1�=��m=1�+s�m=1�=sRS. Therefore, as long as the
m=1 clusters are the thermodynamically relevant ones the
RS approximation gives the correct total entropy. From Eq.
�21� we can also find the probability of having a frozen field
with r=1:

1 − 


2
=

1

Zi→a
�	1 −

1

2K−1�L−1

− 	1 −
1

2K−1

− 
1 − 


2
�K−1�L−1� . �27�

For small L the above equation has only one solution 
=1,
where the m=1 clusters are unfrozen. Increasing L, one
reaches the rigidity point Lr where another solution 
�1
appears. It is where a finite fraction of the variables in these
clusters become frozen. We find that for K�6 the rigidity
transition always happens after the SAT-UNSAT transition.
Simplifying the above equation we obtain


 = �1 −

1 − 


2
�K−1

1 −
1

2K−1
�

L−1

. �28�

Assuming K�1 and 
= c
K one obtains

c  K exp	−
�L − 1�

2K−1 e−c� , �29�

which suggests

Lr  2K−1ec�ln K − ln c + o�1�� . �30�

We see that, like Ld
0, the leading term in Lr diverges as

2K ln K. Compare it with the leading term of Ls
RS which

scales as 2KK.

B. Case m=0

The typical or most numerous clusters are the m=0 ones.
The study of these clusters provides us with an estimate of
the SAT-UNSAT transition �in that they are the last clusters
to disappear�. Indeed the previous studies of the complexity
in 1RSB phase focus on these type of clusters. For m=0 the
generalized free energy reads

F = ln�2	1 − 
1 − 


2
�K−1�L

− 	1 − 2
1 − 


2
�K−1�L�

− �K − 1�� ln
1 − 2
1 − 


2
�K� . �31�

Using Eq. �20� one can easily write an equation for the frac-
tion of frozen marginals:

1 − 


2
= 1 −

	1 − 
1 − 


2
�K−1�L−1

2	1 − 
1 − 


2
�K−1�L−1

− 	1 − 2
1 − 


2
�K−1�L−1 .

�32�

The above equation is another way of writing Eq. �6�, which
has been obtained in the previous studies. Notice that


 =
�L−1

AL−1
, �33�

with AL−1 and � given by Eqs. �5� and �6�. A nontrivial
solution for 
 appears at Ld

0, where for the first time a maxi-
mum appears in the curve ��s�. According to Eq. �19� the
complexity of m=0 clusters is ��m=0�=F. The point that
this quantity vanishes defines the SAT-UNSAT transition Ls.
One can show that, like Ls

RS, the leading term in Ls scales as
2KK.

C. Case �=0

This case is relevant to study very small clusters or close
to the SAT-UNSAT transition where almost all variables are
frozen and 
0. Notice that solving numerically for ��s� is

0 0.01 0.02 0.03 0.04 0.05 0.06
−0.005

0

0.005

0.01

0.015

0.02

0.025

s

Σ

one−link
single hypergraph

FIG. 4. �Color online� Comparing ��s� in a single �4,19�-
hypergraph �N=104 , Np=102� and in the one-link approximation
with Np=105. The statistical errors are about 0.001.
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a heavy computational job and it would be useful to have
other approximation methods to get a good estimate of the
complexity. When 
=0 the generalized free energy is given
by

F = ln
2�2m−1 − 1�	1 −
2

2K−1�L

+ 2	1 −
1

2K−1�L�
− �K − 1�� ln
1 −

2

2K� . �34�

Taking derivatives we obtain the entropy as

s =

2m	1 −
2

2K−1�L

ln 2

2�2m−1 − 1�	1 −
2

2K−1�L

+ 2	1 −
1

2K−1�L . �35�

With the above quantities we can obtain the complexity of
different clusters. In Fig. 5 we have compared this complex-
ity with the one obtained numerically in the one-link ap-
proximation. As the figure shows the agreement is good es-
pecially for the smaller and frozen clusters.

Close to the condensation transition the m=1 clusters are
nearly completely frozen and we expect the 
=0 complexity
to give a good estimate of ��m=1�. From the above equa-
tions we obtain

��m = 1�  ln
2	1 −
1

2K−1�L� − �K − 1�� ln
1 −
2

2K�

−� 1 −
2

2K−1

1 −
1

2K−1
�

L

ln 2. �36�

We use this approximated complexity to determine the con-
densation transition Lc where ��m=1� vanishes. After some
algebra we find that for K�1

Lc  K2K−1
ln 2 −
K

2K + o�1�� . �37�

Notice that the leading term in Lc is exactly the same as in
Ls

RS.

D. Case �=1

The complexity can be nonzero even when the frozen
fields are absent. In this case we can exactly compute the free
energies of m=0,1 ,2 clusters. We use this fact to find an
approximated free energy for m� �0,2�. Having F�m=0�,
F�m=1�, and F�m=2� we use the Lagrange interpolating
polynomial function to write F�m� around m=1:

F�m� = − F�m = 1�m�m − 2� + F�m = 2�
m�m − 1�

2
,

�38�

where we have used the fact that for 
=1, F�m=0�=0. The
resulted entropy and complexity are

s�m� = − 2�m − 1�F + 
m −
1

2
�F�m = 2� ,

��m� = m2	F�m = 1� −
1

2
F�m = 2�� . �39�

As we show in Appendix C, the free energy F�m=2� de-
pends on the second moment of the ��r�:

�r2� =
1

Zi→a�m = 2�	1 −
2

2K−1 + �r2�K−1�L−1

. �40�

It turns out that ��m=1� is zero as long as �r2�=1 /4—i.e.,
��r�=	�r− 1

2
�. The complexity becomes nonzero only when

Eq. �40� suggests a nontrivial solution. We can rewrite Eq.
�40� as

x = 	1 −
1 − xK−1

1 + �1 + x�K−1�2K−1 − 2��L−1

, x �
1

2�r2�
− 1.

�41�

Taking K�1 and x= c
K we find

c  K exp	−
L

2K−1e−c� . �42�

The equation suggests that

Ld  2K−1ec�ln K − ln c + o�1�� , �43�

which behaves very similar to Ld
0 in Eq. �8�.

E. Case of integer m

Suppose that we have computed Zi�mn� and Za�mn� for
mn=0,1 , . . . ,Nm−1. In Appendix C we write explicit rela-
tions for these quantities when ��r�=	�r− 1

2
�. We can find an

approximated free energy that interpolates between the free
energy values at integer m’s, F�mn�. To this end we use the
Lagrange interpolating polynomial

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
−0.01
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0.01

0.02
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0.04

s

Σ

s(m=1)∼ 0.016

FIG. 5. �Color online� Comparing ��s� for K=6 and L=121 �in
the one-link approximation with Np=2�104� with ��s ,
=0�.
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F�m� = �
n=0

Nm−1

F�mn��
l�n

�m − ml�
�mn − ml�

. �44�

To obtain the free energy we also need to determine 
 from
Eq. �21�. This equation depends on Zi→a�m�, which again
can be obtained in the above interpolation approximation.
Using the above approximation we can obtain 
 and the free
energy as long as 0mmf. Here mf is the maximum value
of m such that frozen variables do exist. Indeed for m�mf
the fraction of frozen variables is zero and with a trivial ��r�
we find a zero complexity which is not always correct. The
number of interpolation points is chosen such that the re-
sulted complexity has a reasonable behavior. In Fig. 6 we
compare the complexity obtained in this way with the one
we obtained by the population dynamics. As the figure shows
with the interpolation approximation we are able to repro-
duce the population dynamics results in the interval 0m
mf. With the above approximation we can find an estimate
of the freezing point Lf where all clusters become frozen. In
Table II we compare Lf with degree values at the other phase
transition points.

VII. ALGORITHMS AND THE ENTROPY LANDSCAPE

In this section we will use different algorithms to find
some solutions of the bicoloring problem close to the SAT-
UNSAT transition. We show that a smoothed BP decimation
algorithm is able to find solutions even beyond the rigidity
transition L�Lr. We will also see that, within our level of
approximation and for fixed parameters, the algorithm al-
ways finds solutions that belong to the same kind of clusters.
Interestingly enough, beyond the rigidity transition, we find
solutions to clusters that are exponentially smaller in number
compared to the thermodynamically relevant ones.

A. Cavity method as an algorithm to find solutions

Warning propagation �WP� is an elementary message-
passing algorithm that uses cavity messages to find a solution
of a constraint satisfaction problem. On each edges of the
factor graph we define cavity messages Wa→i
� �−1,0 ,1� , Wi→a� �−1,1�; the warning Wa→i=0 means
that variable i is free to take any value without worrying
about constraint a. On the other hand, if Wa→i=−1,1, vari-
able i should take a value that satisfies constraint a. The
message Wi→a=−1,1 represents the color that variable i has
to take to satisfy the other constraints. Given a factor graph
we start with the initially random values of W’s and in each
sweep of the algorithm we update all the messages; see Fig.
7. For example, the messages on edge �i ,a� are updated in
the following way:

Wa→i = �− 1 if all Wj→a ’ s are 1,

1 if all Wj→a ’ s are − 1,

0 otherwise,
�

Wi→a = sgn
 �
b�V�i�\a

Wb→i� . �45�

If the algorithm converges and no variable receives con-
tradictory warnings, we can determine the solution according
to the warnings. It has been shown that on tree factor graphs
the above algorithm always converges and gives the solu-
tions.

More sophisticated message passing algorithms that work
much better than WP are belief propagation decimation

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
−0.01

0

0.01

0.02

0.03

0.04

s

Σ

FIG. 6. �Color online� Comparing ��s� for K=6 and L=121 �in
the one-link approximation with Np=2�104� with the complexity
that has been obtained by the interpolation approximation �Nm

=10�.

TABLE II. Numerical values of degree L at different transition
points obtained in the 1RSB approximation with the methods de-
scribed in the text.

K Ld Lr Lf Lc Ls

3 6 – – 7 7

4 18 – – 20 20

5 49 53 – 53 53

6 114 119 126 130 130

7 250 257 297 306 307

8 534 543 663 705 706

9 1122 1136 1473 1591 1592

10 2333 2356 3202 3543 3543

−1 −1

1

11

−1

1

1

−1

0

FIG. 7. �Color online� Warning propagation on a factor
graph.
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�BPD� and survey propagation decimation �SPD� �33�. In
these algorithms one replaces the messages Wa→i ,Wi→a with
probabilities that come from a single-cluster �RS� or
multiple-cluster �1RSB� approximation. For example, in
BPD we have the beliefs �a→i ,�i→a, which are updated ac-
cording to the BP equations

�i→a��i� =
1

Zi→a
�

b�V�i�\a
�b→i��i� ,

�b→i��i� = �
��b\i

Ib���b� �
j�V�b�\i

� j→b�� j� . �46�

Starting from random initial values for the �’s we update
them to reach a fixed point of the dynamics. After conver-
gence we define the local fields

Hi � ln
�i�1�
�i�0�

, �47�

where

�i��i� =
1

Zi
�

b�V�i�
�b→i��i� . �48�

Then the most biased variable is fixed according to the sign
of its local field. Then we simplify the factor graph and re-
peat the above procedure until we obtain a paramagnet where
Hi=0 for all the remaining variables. At this stage we can
run a local search algorithm to complete the solution of our
problem. In this paper we are going to use a smoothed ver-
sion of BPD first introduced in �6�. The main idea is to
introduce external fields hi that at each step of the algorithm
are updated according to the local fields. At the end, the
external fields determine the preferred values of the vari-
ables. We call this algorithm belief propagation reinforce-
ment �34�.

More precisely, the BP reinforcement algorithm works as
follows.

�i� Start with random initial values for 0�i→a ,�a→i
1 and −	hi	 �	�1�.

�ii� For t=1, . . . , tmax,
�a� update all the �’s according to the BP equations in the

presence of the external fields,

�i→a��i� =
ehi�i

Zi→a
�

b�V�i�\a
�b→i��i� ,

�b→i��i� = �
��b\i

Ib���b� �
j�V�b�\i

� j→b�� j�; �49�

�b� obtain local fields Hi=ln
�i�1�

�i�0� and with probability 1

− t−� update the external fields as hi→hi+sign�Hi�	.
�c� If �� = ���i=sgn�Hi��i=1, . . . ,N� is a solution, return �� .
Notice that instead of fixing variables one by one, here all

the external fields are updated �with a rate that increases with
t� during the run time. Moreover, in this algorithm we do not
need to simplify the factor graph after each decimation.

For comparison, we also use other algorithms like simu-
lated annealing �SA� and focused simulated annealing �FSA�

to find solutions �35�. In the SA algorithm we start from a
random configuration at small inverse temperature �i�1 /Ti
and decrease the temperature slowly. At each temperature we
select all the variables in a random sequential way and flip a
variable with probability min�1,exp�−� �Ei��. Here �Ei is
the change in the number of unsatisfied constraints if we
accept to flip variable i. After a sweep the inverse tempera-
ture increases by ��. In the FSA algorithm we do the same
as SA except that to flip a variable we only select those that
belong to unsatisfied constraints.

To check the algorithms and their solutions we consider
two different cases: �a� �4,19�-hypergraph �Ld�L�Ls�, just
after the dynamical transition and before the SAT-UNSAT
transition where the thermodynamically relevant clusters are
unfrozen, and �b� �6,121�-hypergraph �Lr�L�Lf�, where
the thermodynamically relevant clusters are frozen, but still
there are some unfrozen clusters.

In case �a� we are able to find some solutions with all
BPR, SA, and FSA algorithms in a reasonable time. On a
�4,19�-hypergraph of N=104 variables it takes about 20 h for
SA and FSA algorithms to find a solution, whereas the BPR
algorithm does the job in about 10 min. In the SA and FSA
algorithms the parameters are �i=0.1 and ��=10−5. In the
BPR algorithm we used �=0.05 and 	=0.01. With these pa-
rameters we could obtain a solution at the end of almost all
runs.

In case �b� we could only find solutions with the BPR
algorithm. Both SA and FSA algorithms were not able to
give a solution in a couple of days even for N=103. How-
ever, on a hypergraph of size N=10 002, the BPR algorithm
still returns a solution for every instance after a few hours in
about 20% of the runs starting with different initial condi-
tions.

We expect the performance of the algorithm could be im-
proved by further optimization. We did not pursue this line as
we are interested in a proof of concept rather than in opti-
mizing algorithms over academic benchmarks.

B. Entropy versus distance from a solution

Suppose that we have the number of solutions at distance
d from a given solution, eNs�d�. If the solution belongs to a
spherelike cluster of solutions, then s�d� increases for d
d� and becomes zero at d�. Clearly, for large N, the entropy
s� is a good �under�estimate of the total entropy of the clus-
ter. If the solution space is more complex, we still expect
s�d� to be, up to a distance d�, an increasing function of d. It
may exhibit a maximum at d� and decrease for larger dis-
tances. In any case we can take s� as an approximation to the
entropy of the cluster.

To obtain s�d� for a given solution �� � and distance d, we
use a local BP as follows.

�i� Start with random initial values for 0�i→a ,�a→i
1 and a reasonable value of x.

�ii� For t=1, . . . , tmax,
�a� update all the �’s according to the BP equations

around the given solution,

�i→a��i� =
ex��i − �i

��2

Zi→a
�

b�V�i�\a
�b→i��i� ,

ENTROPY LANDSCAPE AND NON-GIBBS SOLUTIONS IN … PHYSICAL REVIEW E 77, 031118 �2008�

031118-9



�b→i��i� = �
��b\i

Ib���b� �
j�V�b�\i

� j→b�� j�; �50�

�b� obtain f�x� �Eq. �13�� and find a new x such that d

=
�f�x�

�x .
�c� If converged, calculate the entropy �Eq. �15�� and re-

turn s�d�.
The SP version of this algorithm has been used in �36� to

obtain the complexity as a function of distance from a solu-
tion in k-XOR-SAT problem.

Figure 8 shows s�d� for a number of solutions obtained
with BPR algorithm. As the figures show, we do not always
reach the extremum point of the curve s�d�. It is even more
difficult to observe the decreasing part of the entropy. In-
deed, as we approach the maximum, the convergence time of
the algorithm increases rapidly and exceeds the upper bound

tmax=1000. This happens, probably, when we encounter the
other clusters where replica symmetry approximation is not
valid any more. However, we could observe the decreasing
part of s�d� for small values of N, where computational time
is not too large.

Finally, notice that one could obtain the cluster entropy by
summing over all solutions: exp�Ns�=�dexp�Ns�d��. How-
ever, for large N the maximum entropy has the dominant
contribution to the cluster entropy. To show this we calcu-
lated the cluster entropy s, using the above definition, and
compared it with our estimation s�, which is the maximum
entropy. For instance, for three solutions of a �4,19�-
hypergraph of size N=10 000 we obtain 	s=s−s�

=0.000 115,0.000 118,0.000 121 whereas s�=0.052,0.050,
0.0497, respectively. We see that the differences are very
small compared to the cluster entropy.

Another source of systematic error is that the curves do
not always reach the real extremum. However, as Fig. 8
shows, we observed that the maximum entropy is very close
to the real one. Indeed, an extrapolation of the curves to
higher distances gives a correction which is about 0.001.

C. m=1 vs mÅ1 solutions

Using the method described in the previous subsection we
can now locate our solutions in the entropy landscape to see
to which clusters they belong. In Fig. 9 we show the attrac-
tive clusters of different algorithms after the dynamical tran-
sition and before the rigidity transition. In this case BPR
finds solutions in clusters that are very close to the thermo-
dynamically relevant ones. We think that the difference is
due to the systematic errors in underestimating the cluster
entropy. In addition, there is also some statistical error in the
entropy value of the curve points. The figure also shows that
SA ends up in smaller clusters compared to the thermody-
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FIG. 8. �Color online� s�d� for a few solutions in a �4,19�-
hypergraph with N=10 000 �top� and a �6,121�-hypergraph with
N=100 02 �bottom�. Note that some of the curves have been se-
lected to show the extremal behavior of s�d�.
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s(m=1) ∼ 0.053

s(FSA) ∼ 0.033

s(SA) ∼ 0.046

s(BPR) ∼ 0.051

FIG. 9. �Color online� Comparing the attractive clusters of dif-
ferent algorithms in the entropy landscape. The large circles show
the typical and thermodynamically relevant clusters. All FSA, SA,
and BPR algorithms find solutions in the interval between frozen
and thermodynamically relevant clusters with entropies s�FSA�
�s�SA��s�BPR�. In each case we found 20 solutions on a �4,19�-
hypergraph of size N=10 000. The standard deviations in the entro-
pies is about 0.002
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namically relevant ones. Moreover, FSA finds solutions in
much smaller clusters close to the frozen ones.

The above results have been obtained with parameters
given in Sec. VII A. We found that by decreasing � �in BPR�
or �� �in SA and FSA� the algorithms find solutions in larger
clusters. In fact in a very slow annealing scheme, where one
equilibrates the system at each step of the algorithm, we will
finally find a solution in the thermodynamically relevant
clusters.

Notice that all the algorithms end up in the region be-
tween the frozen and thermodynamically relevant clusters.
Indeed, when N is large it is very difficult to find a solution
in the frozen clusters; each time we flip a frozen variable, we
go to another cluster of solutions and so an extensive number
of flips is needed to accordingly rearrange the variables. On
the other hand, it is not also easy to find a solution in very
large clusters that are exponentially less numerous than the
thermodynamically relevant ones.

As already mentioned, beyond the rigidity transition we
could only find a solution by BPR algorithm. Figure 10
shows that in this case the solutions are very close to the
boundary between frozen and unfrozen clusters. The differ-
ence is about the statistical errors and the error that we make
by underestimating the entropy. We see that when the ther-
modynamically relevant clusters are frozen the algorithm
ends up in the smallest unfrozen clusters. These are exponen-
tially more numerous than the other unfrozen clusters.

We have checked that our solutions do, indeed, belong to
the unfrozen clusters. This can be done with the so-called
whitening process �37,38�. Given a solution one checks if a
variable can be flipped without violating any constraint. If
so, that variable is unfrozen and is denoted with a “�.” The
process goes on by checking one by one the other variables
with the additional rule that a constraint with at least one star
variable be always satisfied. This process is repeated up to
the fixed point where the number of star variables is fixed. If
a solution belongs to an unfrozen cluster, then at the end all
the variables would be �.

VIII. CONCLUSION

In summary, we applied the large deviations cavity
method to study the phase diagram of the bicoloring problem
on regular random hypergraphs. Working in the one-step
replica-symmetry-breaking framework we located the vari-
ous phase transitions characterizing the structure of the solu-
tions landscape at both the ensemble and single-instance lev-
els. Notice that we did not check the stability of 1RSB
solutions toward higher-order replica symmetry breaking.
But as other studies show �39,40�, we expect 1RSB solutions
to give the correct qualitative picture and even exact results
close to the SAT-UNSAT transition.

We also used different algorithms to find solutions and to
locate them in the entropy landscape of the problem. This
provided a rough characterization of the relations existing
between the entropic properties of clusters of solutions and
the different algorithms used to find them.

From an algorithmic point of view, the algorithms based
on simulated annealing could not efficiently find solutions
after the rigidity point. However, using BPR we showed that
it is actually possible to go beyond the rigidity transition. In
this case we obtained solutions that belong to the smallest
and most numerous unfrozen clusters �18�.
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APPENDIX A: CAVITY EQUATIONS
IN THE RS APPROXIMATIONS

We start from the partition function definition in Eq. �9�
and derive the main equations in the first part of Sec. IV. Let
Zi→a��i� denote the partition function in the absence of con-
straint a and when variable i has state �i. Then, in the ab-
sence of constraint a, the probability of finding variable i in
state �i is

�i→a��i� =
Zi→a��i�

��
Zi→a���

. �A1�

On the other hand, assuming a tree structure for the factor
graph we can write

Zi→a��i� = �
��i→a


 �
b�V�i�\a

Ib���b�	 �
j�V�b�\i

Zj→b�� j���ex��i − �i
��2

.

�A2�

From the above equation we can derive a relation for the
cavity marginals:

�i→a��i� =
1

Zi→a
�

��i→a

 �

b�V�i�\a
Ib���b�

�	 �
j�V�b�\i

� j→b�� j���ex��i − �i
��2

, �A3�

where Zi→a is a normalization constant. It is more convenient
if we write the above relation as
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FIG. 10. �Color online� Comparing the attractive clusters of the
BPR algorithm with the typical and thermodynamically relevant
clusters �large circles�. In this case the BPR algorithm finds solu-
tions in the most numerous unfrozen clusters. The result obtained
from 20 solutions on a �6,121�-hypergraph of size N=100 02. The
standard deviation in the entropy is about 0.002.
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�i→a��i� =
ex��i − �i

��2

Zi→a
�

b�V�i�\a
�b→i��i� , �A4�

where

�b→i��i� = �
��b\i

Ib���b� �
j�V�b�\i

� j→b�� j� . �A5�

The free energy f�x� is given by 1
N ln Z. In the Bethe approxi-

mation

f�x� = �
i

�f i − �
a

�Ka − 1��fa, �A6�

where �f i and �fa are the free energy shifts by adding vari-
able node i and function node a, respectively.

Suppose that we have removed node i and all its function
nodes from the factor graph. In this case the partition func-
tion reads

Z−�i,V�i�� = �
a�V�i�

	 �
j�V�a�\i

Zj→a� , �A7�

whereas in the complete factor graph

Z = �
�i,��i

�
a�V�i�

	Ia���a� �
j�V�a�\i

Zj→a�� j��ex��i − �i
��2

.

�A8�

Dividing the two quantities we get

Z

Z−�i,V�i��
= eN�f i

= �
�i,��i

�
a�V�i�

	Ia���a� �
j�V�a�\i

Zj→a�� j�
Zj→a

�ex��i − �i
��2

,

�A9�

and this gives the shift in the free energy by adding variable
node i:

eN�f i = �
�i

�
a�V�i�

�a→i��i�ex��i − �i
��2

. �A10�

We can do the same procedure for a function node. If we
remove function node a from the factor graph, we have

Z−a = �
i�V�a�

Zi→a, �A11�

whereas the complete partition function can be written as

Z = �
��a

Ia���a� �
i�V�a�

Zi→a��i� . �A12�

So

Z

Z−a
= eN�fa = �

��a

Ia���a� �
i�V�a�

Zi→a��i�
Zi→a

, �A13�

and the shift in the free energy is given by

eN�fa = �
��a

Ia���a� �
i�V�a�

�i→a��i� . �A14�

Finally using Eqs. �A6�, �A10�, and �A14� we obtain the
free energy f�x� in the Bethe approximation:

Nf�x� = �
i

ln Zi − �
a

�Ka − 1�ln Za,

Zi � �
�i
	 �

a�V�i�
�a→i��i��ex��i − �i

��2
,

Za � �
��a

Ia���a� �
i�V�a�

�i→a��i� . �A15�

APPENDIX B: CAVITY EQUATIONS
IN THE 1RSB APPROXIMATION

We start from the generalized partition function in Eq.
�16� and explain the main equations in the second part of
Sec. IV.

In the Bethe approximation,

NF�m� = �
i

�Fi − �
a

�Ka − 1��Fa. �B1�

The generalized partition function can be written as

Z = �
c

emN�sc,−�i,V�i��+�sc,i�, �B2�

where �sc,i is the shift in the entropy of cluster c by adding
node i and all its function nodes. At a fixed value of m the
typical clusters would have nearly the same entropy and it
seems safe to approximate emN�si with its average value
among the clusters—i.e.,

Z = 	�
c

emNsc,−�i,V�i���� dP���emN�si, �B3�

where P��� is the probability distribution of �i→a’s among
the clusters. So the shift in the generalized free energy reads

eN�Fi =� �
a�V�i�

�
j�V�a�\i

dP j→a�� j→a�emN�si. �B4�

In the case of adding a function node, similarly we find

eN�Fa =� �
i�V�a�

dPi→a��i→a�emN�sa. �B5�

Notice that �si and �sa correspond to the free energy shifts,
Eqs. �A10� and �A14�, with x=0. Using Eqs. �B4� and �B5�
along with the Bethe form of the generalized free energy we
obtain

NF�m� = �
i

ln Zi − �
a

�Ka − 1�ln Za,

Zi �� DiP���emN�si,

DALL’ASTA, RAMEZANPOUR, AND ZECCHINA PHYSICAL REVIEW E 77, 031118 �2008�

031118-12



Za �� DaP���emN�sa, �B6�

where dP��� is determined by Eq. �20�. The normalization
constant in this equation is

Zi→a =� �
b�V�i�\a

�
j�V�b�\i

dP j→b���emN�si. �B7�

We represented P��� as

P��� =
1 − 


2
�	�r� + 	�r − 1�� + 
��r� , �B8�

where ��r� is the probability distribution of unfrozen margin-
als. By the normalization and symmetry of the problem

� dr��r� = 1,

� dr r��r� =� dr�1 − r���r� =
1

2
. �B9�

Then for the Qi→a
� ���=2�i→a���Pi→a��� we have

Qi→a
0 ��� = �1 − 
�	�1 − r� + 2
r��r� ,

Qi→a
1 ��� = �1 − 
�	�r� + 2
�1 − r���r� . �B10�

Notice that for �� �0,1�,

� d�Qi→a
� ��� = 1. �B11�

APPENDIX C: CALCULATING THE GENERALIZED
FREE ENERGY

To calculate the free energy F we need to obtain Zi, Za,
the fraction of unfrozen variables 
, and ��r�. Let us start
from Eq. �20� and multiply both sides of the equation with
e−rt. Integrating over r allows us to get rid of the 	 function
and we find

1 − 


2
�1 + e−t� + 
� ��r�e−rtdr

=
1

Zi→a
�

b�V�i�\a
	 �

nb
0,nb

1,nb
�

 K − 1

nb
0,nb

1,nb
��

�
1 − 


2 �nb
0+nb

1


nb
� �

j�V��b�
� drb

j ��rb
j ��	�

b

�0�nb,rb�

+ �
b

�1�nb,rb��m
e−t/Zi→a�b�0�nb,rb�, �C1�

where nb
0 and nb

1 are the number of frozen variables in V�b� \ i
that take values 0 and 1, respectively. Accordingly V��b� \ i is
the set of unfrozen variables in V�b� \ i and nb

� is the number
of its elements. Notice that nb’s should satisfy n0+nb

1+nb
�

=K−1.

Using Eqs. �A3� and �A10� we write

r =
1

Zi→a
�

b�V�i�\a
�0�nb,rb� ,

eN�si = �
b�V�i�

�0�nb,rb� + �
b�V�i�

�1�nb,rb� , �C2�

where

�0�nb,rb� = �1 − 	nb
0,K−1�	1 − 	nb

1,0�1 − 	nb
�,0� �

j�V��b�\i

rb
j� ,

�1�nb,rb� = �1 − 	nb
1,K−1�	1 − 	nb

0,0�1 − 	nb
�,0� �

j�V��b�\i

�1 − rb
j �� .

�C3�

One can use Eq. �C1� to write some equations for different
moments of ��r�. For example, for the second moment we
obtain

1 − 


2
+ 
�r2� =

1

Zi→a
�

b�V�i�\a
	 �

nb
0,nb

1,nb
�

 K − 1

nb
0,nb

1,nb
��

�
1 − 


2 �nb
0+nb

1


nb
� �

j�V��b�\i
� drb

j ��rb
j ��

�	 �
b�V�i�\a

�0�nb,rb� + �
b�V�i�\a

�1�nb,rb��m

�
�b
�0�nb,rb�

Zi→a
�2

. �C4�

To compute F we also need to find eN�sa in Eq. �A14�:

eN�sa = �1 − 	na
0,K��1 − 	na

1,K�	1 − 	na
1,0�1 − 	na

�,0� �
i�V��a�

ra
j

− 	na
0,0�1 − 	na

�,0� �
i�V��a�

�1 − ra
i �� . �C5�

The normalization constants in Eqs. �A2� and �B7� are

Zi→a = �
b�V�i�\a

�0�nb,rb� + �
b�V�i�\a

�1�nb,rb� �C6�

and

Zi→a = �
b�V�i�\a

	 �
nb

0,nb
1,nb

�

 K − 1

nb
0,nb

1,nb
��

�
1 − 


2 �nb
0+nb

1


nb
� �

j�V��b�\i
� drb

j ��rb
j ��

�	 �
b�V�i�\a

�0�nb,rb� + �
b�V�i�\a

�1�nb,rb��m
.�C7�

Finally for the main elements of the generalized free en-
ergy we have
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Zi = �
b�V�i�

	 �
nb

0,nb
1,nb

�

 K − 1

nb
0,nb

1,nb
��

�
1 − 


2 �nb
0+nb

1


nb
� �

j�V��b�\i
� drb

j ��rb
j ��

�	 �
b�V�i�\a

�0�nb,rb� + �
b�V�i�\a

�1�nb,rb��m
�C8�

and

Za = �
na

0,na
1,na

�


 K

na
0,na

1,na
� �
1 − 


2
�na

0+na
1


na
� �
i�V��a�

� dra
i ��ra

i �

�	�1 − 	na
0,K��1 − 	na

1,K�
1 − 	na
1,0�1 − 	na

�,0� �
i�V��a�

ra
j

− 	na
0,0�1 − 	na

�,0� �
i�V��a�

�1 − ra
i ���m

. �C9�

In the following we will give the details of calculations in
two special cases that need more explanation.

1. Case �=1

When 
=1 the equation for Zi, Eq. �C8�, is

Zi = �
a=1,L

	 �
j=1,K−1

� dra
j ��ra

j ��	�
a

�1 − �
j

ra
j � + �

a

1

− �
j

�1 − ra
j ���m

. �C10�

For m=0,1 ,2 we obtain

Zi�m = 0� = 1,

Zi�m = 1� = 2	1 −
1

2K−1�L

,

Zi�m = 2� = 2	1 −
2

2K−1 + �r2�K−1�L

+ 2	1 −
2

2K−1 + 
1

2
− �r2��K−1�L

. �C11�

For Za from Eq. �C9� we find

Za = 	 �
i=1,K

� dra
i ��ra

i ��	1 − �
i

ra
i − �

i

�1 − ra
i ��m

.

�C12�

Again, for m=0,1 ,2,

Za�m = 0� = 1,

Za�m = 1� = 	1 −
2

2K� ,

Za�m = 2� = 	1 −
4

2K + 2�r2�K + 2
1

2
− �r2��K� .

�C13�

To complete the free energy calculations we need to find �r2�
in m=2 clusters. The second moment of ��r� can be obtained
from Eq. �C4�:

�r2� =
1

Zi→a
�

b=1,L−1
	 �

j=1,K−1
� drb

j ��rb
j ��	�

b

1 − �

j

rb
j�

+ �
b

1 − �

j

�1 − rb
j ���m−2	�

b

�1 − �
j

rb
j ��2

.

�C14�

If m=2, the exact equation is

�r2� =
1

Zi→a�m = 2�	1 −
2

2K−1 + �r2�K−1�L−1

. �C15�

Now we can use the Lagrange interpolating polynomial to
approximate the free energy by

F�m� = F�m = 0�
�m − 1��m − 2�

2
− F�m = 1�m�m − 2�

+ F�m = 2�
m�m − 1�

2
. �C16�

Since F�m=0�=0, we get

F�m� = − F�m = 1�m�m − 2� + F�m = 2�
m�m − 1�

2
,

s�m� = − 2�m − 1�F�m = 1� + 
m −
1

2
�F�m = 2� ,

��m� = m2	F�m = 1� −
1

2
F�m = 2�� . �C17�

2. Case of integer m

Starting from Eq. �B7� we expand Zi→a for integer m
�0 to get

Zi→a = �
l

m

l � �
b�V�i�\a

	 �
nb

0,nb
1,nb

�

 K − 1

nb
0,nb

1,nb
��
1 − 


2 �nb
0+nb

1

�
nb
� �

j�V��b�
� drb

j ��rb
j ��0

l �nb,rb��1
m−l�nb,rb�� .

�C18�

To simplify the results we approximate ��r� by 	�r− 1
2

�. After
some simplifications we obtain

DALL’ASTA, RAMEZANPOUR, AND ZECCHINA PHYSICAL REVIEW E 77, 031118 �2008�

031118-14



Zi→a = �
l

m

l ��1 − 2
1 + 


2 �K−1

+ 
K−1 + 
K−1
1

−
1

2K−1�m

− 
K−1
1 −
1

2K−1�l

− 
K−1
1 −
1

2K−1�m−l

+ �
n

K − 1

n �
1 − 


2 �K−1−n


n	
1 −
1

2n�l

+ 
1 −
1

2n�m−l��L−1

. �C19�

For Za we use Eq. �C9� and again ��r�=	�r− 1
2

� to get

Za = 
K	1 −
2

2K�m

− 2
K	1 −
1

2K�m

+ 2�
n

K

n
�

�
1 − 


2
�K−n


n	1 −
1

2n�m

+ 	1 + 
K − 2
1 + 


2
�K� .

�C20�

To obtain the free energy we still need to determine 
. From
Eq. �21� we have

1 − 
 =
2−�K−1��L−1�+1

Zi→a
�

l=1,L−1

L − 1

l
���1 − 
�K−1�l

�	�
��b\i

Ib���b\i�� �
j�V�b�\i

dQ�j���
1 − 	nb
1,0�1

− 	nb
�,0� �

j�V�b�\i
rb

j�m−1�L−1−l

. �C21�

Taking ��r�=	�r− 1
2

� we obtain an equation for 
 and for
general m:

1 − 


2
=

1

Zi→a
�	1 − 
1 + 


2 �K−1

+ �
n

K − 1

n �
�
1 − 


2 �K−1−n


n
1 −
1

2n�m�L−1

− 	1

− 
1 + 


2 �K−1

− 
1 − 


2 �K−1

+ �
n

K − 1

n �
�
1 − 


2 �K−1−n


n
1 −
1

2n�m�L−1� . �C22�
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